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General Instructions

Reading Time - 5 Minutes

Working time — 90 Minutes

Write using black or blue pen. Pencil may
be used for diagrams.

Board approved calculators maybe used.

Each Section is to be returned in a separate
bundle.

All necessary working should be shown in
every question.
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e  Attempt questions 1 — 6

e Hand up in 3 separate booklets clearly
labelled Section A, Section B and

Section C
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Question 1 (13 marks)

(a)

(b)

(©)

(d)

(e)

SECTION A

Convert 80° to radians in exact form.

Convert % radians to degrees.

Differentiate the following:

(i)  4x*+5

3x+1
1t

(@) 2x—1
(v) xv1-2x

Find a primitive of:

@ =
X
Gi) Jx

Find f"(2) if f(x)=x’

2]



Question 2 (15 marks)

()

(b)

©

(d)

(e)

A(- 1,5),B (2,1) and C(4, k) are collinear. Find the value of k. 3]
. x? +1 :
Find | ——dx [2]
x

Evaluate J-_ll(x ~ 1)+ 1)dx 3]

A die is tossed twice. The sum of the numbers which appear on the

upmost face of the die is calculated. Using a table or otherwise:

(i)  Find the probability that the sum is greater than 8. [2]

(it) It 1s known that a 4 appears on the die at least once in [2]

the two throws. Find the probability that the sum is

greater than 8.
The vertices of a triangle are A (1,3), B(8,2) and C(4,-1).

(1) Find the coordinates of D and E, the midpoints of AC

and AB respectively.

(i)  Hence, show that DE is parallel to CB. [2]



SECTION B
Question 3 (14 marks)

(a) If y=(x2+4Xx—3),solve d—)=4.

dx

(b) The diagram below is the graph of y =3 +3cosx

KRR
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w‘;
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B

o
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(1) Copy this graph onto your answer sheet.

(i)  State the amplitude and period of y =3sin2x.

(iii)  On the same graph as (i), sketch y =3sin2x

for 0<x<2rx.

(iv)  How many solutions are there to the equation

3+3cosx =3sin2x?

(©) A class of 30 students contains 18 students who play cricket, 13 who

play tennis and 5 who play both cricket and tennis. If one student is
chosen at random find the probability that this student plays neither

cricket nor tennis.



(d)  The diagram below shows a paddock with one side bounded 3]

by ariver. AE is a boundary fence 40 metres in length. AO,
BP, CQ, DR, ES are offsets measured from the fence to the
river with lengths as shown. AB = BC=CD =DE.

NOT
T0
SCALE

Use Simpson’s rule with 5 function values as shown on the diagram to approximate

the area of the paddock.

(e) The gradient function of a curve is 3x*> —1 and the curve passes [2]

through the point(4,1). Find the equation of the curve.



Question 4 (13 marks)

(a) A girl has 5 tickets in a raffle where 100 tickets are sold.
First prize is drawn discarded and then the second prize is drawn.

Find the probability that she wins:

(1) first prize

(i1)  second prize

(b)  Consider the curve y = x* —4x’

) Find the coordinates of the stationary points.
(1)  Determine the nature of these stationary points.
(i)  For what values of x is the curve concave up?
(iv)  For what values of x is the curve decreasing?

) Hence sketch the curve.

. |
(c) If the probability that an event E occurs is —, express the
x

probability that E does not occur as a single fraction.

1]

2]



SECTION C
Question 5 (15 marks)

(a) A flower bed is made in the shape of a minor sector with

angle 9 and radius 2 metres.

e

|

(1) If the area of the flower bed is 1. 6m°, find the angle 9

to the nearest minute.

(i1)  Find the perimeter of the flower bed to the nearest cm.

(b)  ABCD is a parallelogram. The bisectors of angles ADC and BCD
meet at P on the side AB. Prove that:

A\

(1) £ DPC is a right angle.

(ii) A ADP is isosceles.

(i) AB=2BC



The graph below of the function f consists of a quarter
circle AB and two line segments BC and CE.

B C

108

2a =
/a_

o2

()  Evaluate [ f(x)ix.

(1) For what value(s) of x satisfying 0 < x <8 is the

function f not differentiable?

(d) The diagram below shows the graph of the gradient function

of a curve. For what value(s) of x does f(x) have a local

maximum? Justify your answer.




Question 6 (15 marks)

(a) The diagram below shows the graphs of the functions

y=-x*+T7x—6and y=x+2.

"

X
(i)  Show that the value of A and B is 2 and 4 respectively. 2]
(i)  Calculate the area of the shaded region. [2]
(iii)  Write down a pair of inequalities that specify the [1]

shaded region.



(b)

@A) Find the equation of the tangent and the equation of the [4]

normal to the curve y = —2x? +6x+3 at the point A (2,7).

(i)  The tangent cuts the x axis at B. The normal cuts the x axis [2]

at C as shown in the diagram. Find the values of B and C.
Hence, find the area of A ABC.

(c) In the diagram below AC is parallel to FD and BF is parallel to CE.
B lies on AC, D lies on CE and F lies on AE. AF = 6cm, FE = 14cm

and AB = 7cm.
C
D
B
7cm
A 6 cm F 14 cm IS
(i)  Find BC. [2]
(i)  Find the ratio of BF to DE. 2]

END OF TEST



STANDARD INTEGRALS

x"dx=—1—x"“, n#-1;x#0,ifn<0
J n+l

~

ld)c=ln)c,x>0
1x

[ 1
e“dx=—e",a+0

Q

~

| .
cosaxdx=—sinax, a#0
a

~

. 1
sinaxdx=——cosax, a#0
a

J

1
sec? axdx=—tanax,
a
J

' 1
secaxtanaxdx =—secax, a#0
J a
[ 1 |

4 X
= 2dx=—tan‘—,a;z&0
Ja +x a a

1

(——l—dx=sin' f—, a>0, —a<x<a

J glag® =" a

r
—1—dx=h1(x+\/x2—a2>,x>a>0
szt —a
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J \/x2+a2

NOTE: Inx=1log,x, x>0
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Question (2) (d)
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